If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2-13p-30=0
a = 3; b = -13; c = -30;
Δ = b2-4ac
Δ = -132-4·3·(-30)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-23}{2*3}=\frac{-10}{6} =-1+2/3 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+23}{2*3}=\frac{36}{6} =6 $
| 2x−x=20 | | 18w−17w−w+4w=20 | | 9y-10=8-3y | | x-2/3-1=x-7/4 | | 8u+4u+3u−8u−2u=20 | | H(t)=-4.9^2t+20t+4 | | -3d=9-2d | | x-8)(7x+5)=0 | | 3+3n=2n+10 | | 3x=1.5x+15 | | 3x=1.5x15 | | 2y^2+6=134 | | 4t=49 | | (4x+8)+(5x-5)+(6x-18)=180 | | 8^2x+2=48 | | 6/5=h/(3/8) | | 7(3x-2)=14/4 | | 2^(12-3x)=8 | | 8x+423=0 | | v/10.24=8 | | -10p+8=7p | | (5x+8)+(6x-4)+(7x-4)=180 | | 4x-24=132 | | (1/8)^(3a)=512^(3a) | | 3(x-4)^2+7=34 | | 10x-20=7x+7-2 | | 24=3-4(x-5) | | 10×-20=7x+7-3 | | -2x-8x+15=25-x | | -6(x-3)+4(3-6x)=-36 | | 2x-1/6+8=(4x+1)/4 | | 12xx=156 |